On Github sballesteros / inference_unix
cat theta.json | simplex -M 1e4 | ksimplex -M 1e4 | mif -M 1e2 > mle.json
cat index.html | wc
ls | grep .html | wc -l
Code → Inference
plug-and-play methods require only simulations from a model
Semantic → Code → Inference
"model": [ {"from": "S", "to": "I", "rate": "beta*S*I/N"}, {"from": "I", "to": "R", "rate": "v"} ], "white_noise": [ { "reaction": [{"from":"S", "to": "I"}], "sd": "sto" } ]
{ "beta": { "transformation": "log", "unit": "D" "guess": {"NewYork": 90, "Paris": 120} }, }
cat theta.json | simplex -M 1e4 | ksimplex -M 1e4 | mif -M 1e2 > mle.json
[ { name: "lhs_simplex", id: "lhs", H: 500, cmd: [ { comment: "Get the initial conditions", fit: "-D -p -I", algorithm: "simul ode -T 100000" }, { comment: "First simplex", fit: "-D -X -p -r rep -j", algorithm: "simplex -M 10000 --no_trace --prior" }, { comment: "We chain ksimplex", fit: "-B -u 0.01", algorithm: "ksimplex -M 10000 --no_trace --prior", repeat: 19 } ] }, { reduce: "best" }, { name: "pMCMC_sampler", id: "replicate", H: 19, cmd: [ { comment: "Get a covariance matrix", fit: "-D", algorithm: "kmcmc -M 20000 --full" }, { comment: "sample", fit: "-D -C", algorithm: "pmcmc -M 1000000 -J 1000 --full -C" } ] } ]
>