On Github jarthurgross / sydney2016
Jonathan A. Gross, Amir Kalev, Howard Barnum, Carlton M. Caves
Center for Quantum Information and Control, University of New Mexico
Quantify distance between two quantum states by how statistically distinguishable they are
More distinguishable: further apart
Less distinguishable: closer together
How far apart are coins with different biases?
W. K. Wootters, Phys. Rev. D 23, 357 (1981)How far apart are coins with different biases?
W. K. Wootters, Phys. Rev. D 23, 357 (1981)The fluctuations depend on the estimator used
The Cramér–Rao bound gives us an achievable lower bound
E [(Δp^)2]≥1F(p) \begin{align} \mathbb{E}\left[(\Delta\hat{p})^2\right]&\geq\frac{1}{F(p)} \end{align}This allows us to generally define our statistical distance in terms of the Fisher information (FI)
ds∼dpΔp^→F(p )dp \begin{align} ds&\sim\frac{dp}{\Delta\hat{p}}\to\sqrt{F(p)}\,dp \end{align}The FI quantifies the information a random variable provides about a parameter
Quantifies how likely you are to mistake one distribution for another (not symmetric)
Locally it defines the same distance as the FI
D(fp∥fp+δ p)= 12δp2F(p) \begin{align} \mathcal{D}(f_p\Vert f_{p+\delta p})&=\frac{1}{2}\delta p^2\,F(p) \end{align}This matrix can be used as a metric
ds∼dp TF(p)dp \begin{align} ds&\sim\sqrt{d\mathbf{p}^\mathsf{T}F(\mathbf{p})\,d\mathbf{p}} \end{align}Random variable defined by a positive-operator-valued measure (POVM), {Eξ} \{E^\xi\}
Pr (Ξ=ξ|x)= tr[Eξρ(x)]∑ξEξ=I \begin{align} \operatorname{Pr}(\Xi=\xi|\mathbf{x}) &=\operatorname{tr}[E^\xi\rho(\mathbf{x})] & \sum_\xi E^\xi&=I \end{align}We write the FI generated by a particular POVM as
Cαβ(x)=∑ ξtr[Eξ∂αρ(x)]tr[Eξ∂βρ(x)]tr[Eξ ρ(x)] \begin{align} C_{\alpha\beta}(\mathbf{x})&=\sum_\xi\frac{ \operatorname{tr}[E^\xi\partial_\alpha\rho(\mathbf{x})] \operatorname{tr}[E^\xi\partial_\beta\rho(\mathbf{x})]} {\operatorname{tr}[E^\xi\rho(\mathbf{x})]} \end{align}
Assume Hilbert space of finite dimension dd
tr [Q−1C]≤d−1 QαβCαβ≤d−1 \begin{align} \operatorname{tr}[Q^{-1}C]&\leq d-1 & Q^{\alpha\beta}C_{\alpha\beta}&\leq d-1 \end{align}The bound is saturable
tr[ Q−1C]=d−1Eξ=|ϕξ⟩⟨ ϕξ| \begin{align} \operatorname{tr}[Q^{-1}C]&=d-1 & E^\xi&=|\phi^\xi\rangle\langle\phi^\xi| \end{align}R. D. Gill and S. Massar, Phys. Rev. A 61, 042312 (2000)Can choose parameters so Q=IQ=I .
Saturate GM bound: ∑jCjj=d−1\sum_jC_{jj}=d-1
Can choose parameters so Q=IQ=I .
Saturate GM bound: ∑jCjj=d−1\sum_jC_{jj}=d-1
Have device to prepare a target state
Want to measure deviations
FSMs have been constructed for pure states in all dimensions
N. Li, C. Ferrie, J. A. Gross, A. Kalev, and C. M. Caves, Phys. Rev. Lett. 116, 180402 (2016)POVM is an FSM iff it is a 2-design
∑ξEξ⊗Eξ tr[Eξ]=1d+1∑j,k (|ej⟩⟨ej|⊗|ek⟩ ⟨ek| =1d+1∑j,k (+| ej⟩⟨ek|⊗|ek⟩ ⟨ej| ) \begin{align} \sum_\xi\frac{E^\xi\otimes E^\xi}{\operatorname{tr}[E^\xi]} &=\frac{1}{d+1}\sum_{j,k}\Big( |e_j\rangle\langle e_j|\otimes|e_k\rangle\langle e_k| \\ &\hphantom{=\frac{1}{d+1}\sum_{j,k}\Big(} +|e_j\rangle\langle e_k|\otimes|e_k\rangle\langle e_j|\Big) \end{align}Examples: SIC-POVMs, MUBs, uniformly random basis
Consider equatorial plane of the Bloch ball
As in the simplex case, Euclidean distance doesn't reflect statistical distance
Just like the simplex is naturally a semicircle, the Bloch ball is naturally the upper hemisphere of S 3S^3
Consider tensor form of CFI
∑ξEξ⊗Eξ tr[Eξρ] \begin{align} \sum_\xi\frac{E^\xi\otimes E^\xi}{\operatorname{tr}[E^\xi\rho]} \end{align}This is invariant under the Choi isomorphism
|ej⟩⟨ek|⊗|em⟩ ⟨en|↔| ej⟩⟨en|⊗|em⟩ ⟨ek| \begin{align} |e_j\rangle\langle e_k|\otimes|e_m\rangle\langle e_n| &\leftrightarrow|e_j\rangle\langle e_n|\otimes|e_m\rangle\langle e_k| \end{align}For the QFI to be invariant under the Choi isomorphism, it must be that
λj+λk =2dj≠k \begin{align} \lambda^j+\lambda^k&=\frac{2}{d} & j&\neq k \end{align}Only true for qubits and at the maximally mixed state
Need to find a new geometry in the higher-dimensional multiparameter setting
Want as close to uniform accuracies as possible
Purity measures uniformity of eigenvalues tr[ ρ2]>tr[σ2] \begin{align} \operatorname{tr}[\rho^2]&>\operatorname{tr}[\sigma^2] \end{align}
Analogous quantity for the CFI
tr [Q−1CQ −1C]=CαβCαβ \begin{align} \operatorname{tr}[Q^{-1}CQ^{-1}C]&=C^{\alpha\beta}C_{\alpha\beta} \end{align}Minimize the purity of the CFI
{E FSξ}=argmin{Eξ }CαβCαβ \begin{align} \{E^\xi_\text{FS}\}&=\underset{\{E^\xi\}}{\operatorname{arg\,min}} \,C^{\alpha\beta}C_{\alpha\beta} \end{align}Limitations of strict symmetry requirements (or: why one should never trust qubits)
Pure states ✔ Maximally mixed state ✔ Qubits ✔ Full-rank higher dimension ✘Promising preliminary perturbative results