On Github jarthurgross / apsmarch2016
Jonathan A. Gross, Amir Kalev, Howard Barnum, Carlton M. Caves
Center for Quantum Information and Control, University of New Mexico
How far apart are coins with different biases?
W. K. Wootters, Phys. Rev. D 23, 357 (1981)How far apart are coins with different biases?
W. K. Wootters, Phys. Rev. D 23, 357 (1981)The Fisher information (FI) quantifies fluctuations
Fjk(p)=∑Outcomes∂jPr(outcome|p)∂kPr(outcome|p)Pr(outcome|p)This matrix can be used as a metric: ds∼√dxTF(x)dx
Random variable defined by a positive-operator-valued measure (POVM), {Eξ}
Pr(Ξ=ξ|x)=tr[Eξρ(x)]∑ξEξ=IWe write the FI generated by a particular POVM as
Cαβ(x)=∑ξtr[Eξ∂αρ(x)]tr[Eξ∂βρ(x)]tr[Eξρ(x)]
S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994)
Assume Hilbert space of finite dimension d
tr[Q−1C]≤d−1QαβCαβ≤d−1The bound is saturable
tr[Q−1C]=d−1Eξ=|ϕξ⟩⟨ϕξ|R. D. Gill and S. Massar, Phys. Rev. A 61, 042312 (2000)Can choose parameters so Q=I.
Saturate GM bound: ∑jCjj=d−1
Can choose parameters so Q=I.
Saturate GM bound: ∑jCjj=d−1
Li et al. have shown FSMs to exist for pure states in all dimensions and given an explicit construction
N. Li, C. Ferrie, J. A. Gross, A. Kalev, and C. M. Caves, arXiv:1507.06904POVM is an FSM iff it is a 2-design
∑ξEξ⊗Eξtr[Eξ]=1d+1∑j,k(|ej⟩⟨ej|⊗|ek⟩⟨ek|=1d+1∑j,k(+|ej⟩⟨ek|⊗|ek⟩⟨ej|)Examples: SIC-POVMs, MUBs, uniformly random basis
Consider tensor form of CFI
∑ξEξ⊗Eξtr[Eξρ]This is invariant under the Choi isomorphism
|ej⟩⟨ek|⊗|em⟩⟨en|↔|ej⟩⟨en|⊗|em⟩⟨ek|For the QFI to be invariant under the Choi isomorphism, it must be that
λj+λk=2dj≠kOnly true for qubits and at the maximally mixed state
Need to find a new geometry in the higher-dimensional multiparameter setting
Want as close to uniform accuracies as possible
Purity measures uniformity of eigenvalues tr[ρ2]>tr[σ2]
Analogous quantity for the CFI
tr[Q−1CQ−1C]=CαβCαβMinimize the purity of the CFI
{EξFS}=argmin{Eξ}CαβCαβLimitations of strict symmetry requirements (or: why one should never trust qubits)
Pure states ✔ Maximally mixed state ✔ Qubits ✔ Full-rank higher dimension ✘Promising preliminary perturbative results