A Polylogarithmic Approximation Algorithm for the Group Steiner Tree Problem
N. Garg, G. Konjerod, R. Ravi
Presented by Daniel Vaz
Group Steiner Tree
-
Input:
- Graph $G = (V, E)$ with edge weights $c_e\geq0$
- A root vertex $r$
- $k$ groups of vertices $g_1, g_2, \ldots, g_k$
-
Goal: Obtain a tree $T$ that
- Connects each group $g_i$ to $r$
- Has minimum cost
Results
- This paper
- $O(\log n \, \log k)$ approximation for trees
- $O(\log^2 n \, \log k)$ approximation for general graphs
- Other Results
- Hardness of $\Omega(\log^{2-\epsilon} n)$ (trees)
- Some quasi-polynomial algorithms
- $O(\log^{1+\epsilon} n \, \log k)$ approximation for trees
Outline
-
Solve the problem on Trees
- Solve linear program
- Round solution
- Multiple rounds
-
Extend to general graphs
Linear Program
$\displaystyle \text{min} \sum_e c_e x_e$
$\displaystyle \quad\,\,\,\,\sum_{e \in \delta S} x_e \geq 1, \quad\quad
\forall\,S \subseteq V: S \text{ cuts } r \text{ from some } g_i$
$\displaystyle \quad\,\,\,\,x_e \in \{0, 1\}$
$\displaystyle \quad\,\,\,\,x_e \in [0, 1]$
Rounding
-
Pick $e$ with probability $x_e$?
-
Do dependent rounding:
- mark $e$ with probability $x_e/x_{p(e)}$
- pick marked $e$ if $p(e)$ is picked
Rounding
-
Lemma 1: This algorithm outputs $E^\prime \subseteq E$ such that:
- $P[e\text{ is picked}] = x_e$
- $E[\text{Cost of } E^\prime] = OPT$
- For any group $g$,
$$P[E^\prime \text{ connects }r\text{ to }g] \geq \Omega\left(\frac1{\log |g|}\right)$$
Multiple Rounds
- The probability of success is too low
- Run $L=O(\log k \, \log n)$ rounds of the algorithm
-
Lemma 2: Let $\hat E = \bigcup_{i\in [L]} \hat E_i$ after $L$ rounds. Then,
- $P[\hat E\text{ connects all groups to }r] \geq 3/4$
- $E[\text{Cost of } \hat E] = O(\log n \, \log k) \, OPT$
Proof of Lemma 2
Lemma 2: Let $\hat E = \bigcup_{i\in [L]} \hat E_i$ after $L$ rounds. Then,
- $P[\hat E\text{ connects all groups to }r] \geq 3/4$
- $E[\text{Cost of } \hat E] = O(\log n \, \log k) \, OPT$
Proof of Lemma 1.3
Lemma 1.3: For any group $g$,
$$P[\hat E \text{ connects }r\text{ to }g] \geq \Omega\left(\frac1{\log |g|}\right)$$
Steps:
- Apply a transformation
- Bound probability with Jansen's inequality
Proof of Lemma 1.3
Claim 3: If $x^\prime_e \leq x_e$ for all $e \in E$,
$$P[connect(g,x^\prime)] \leq P[connect(g, x)]$$
Proof of Lemma 1.3
-
Transformation:
- Remove unnecessary edges (not leading to $g$)
- Reduce $x$ such that it is minimally feasible
- Round down all $x_e$ to the nearest power of $2$
- Delete all edges with $x_e \leq 1/4|g|$
- If $x_e = x_{p(e)}$, contract $e$
Proof of Lemma 1.3
-
Jansen's inequality:
- Let $S$ be a ground set and $P_1, P_2, \ldots$ subsets of $S$
-
Let $S^\prime$ be a random independent sample of $S$
-
Let $\mathcal{E}_i$ be the event that $P_i \subseteq S^\prime$
-
Let $\mu = \sum_i P[\mathcal{E}_i]$ and $\Delta = \sum_{i\sim j} P[\mathcal{E}_i \cap \mathcal{E}_j]$
- Then,
$$P\left[\cap_i \bar{\mathcal{E}}_i\right] \leq \exp\left\{\frac{-\mu^2}{2\Delta}\right\}$$
Proof of Lemma 1.3
-
Claim 4:
- Let $S$ be the set of edges
- $P_v$ the set of edges in the path from $r$ to $v$
-
Let $S^\prime$ be a set of edges marked w. p. $x_e/x_{p(e)}$.
-
Then, $1/4 \leq \mu \leq 1$ and $\Delta \leq 2 \log n $
Proof of Lemma 1.3
Lemma 1.3: For any group $g$,
$$P[\hat E \text{ connects }r\text{ to }g] \geq \Omega\left(\frac1{\log |g|}\right)$$
Steps:
- Apply a transformation
- Bound probability with Jansen's inequality
General Graphs
- Approximate edge costs by a tree metric
- Possible to do with $O(\log n)$ distortion
- This transforms the graph into a tree
- Result: $O(\log^2 n \, \log k)$ approximation
Conclusion
- $O(\log n \, \log k)$ approximation for trees
- $O(\log^2 n \, \log k)$ approximation for general graphs
- Hardness of $\Omega(\log^{2-\epsilon} n)$ (trees)
A Polylogarithmic Approximation Algorithm for the Group Steiner Tree Problem
N. Garg, G. Konjerod, R. Ravi
Presented by Daniel Vaz
1
A Polylogarithmic Approximation Algorithm for the Group Steiner Tree Problem
N. Garg, G. Konjerod, R. Ravi
Presented by Daniel Vaz