Vedrana B.
The Data Science Specialization: Developing Data Products
Problem description:
Problem solution:
using existing Galton's dataset (1885 study)
parents represented by midparent height:
\qquad \qquad hParent = \frac{hFather + 1.08*hMother}{2}
linear model fit on the Galton's dataset:
\qquad \qquad \qquad hChild = \alpha * hParent + \beta
SHINY application available online
# Chunk of R code for plotting interactive rCharts scatterplot library(UsingR); require(base64enc); require(rCharts) data(galton) options(RCHART_WIDTH = 600, RCHART_HEIGHT = 300) knitr::opts_chunk$set(comment = NA, results = 'asis', tidy = F, message = T) g1 <- nPlot(child ~ parent, data = galton, type = 'scatterChart') #g1$show('inline', include_assets = TRUE) g1$save('fig/g1.html') cat('<iframe src="fig/g1.html" width=100%, height=600></iframe>')
# Chunk of R code for building the LM model and for predicting: model <- lm(formula = child ~ parent, data = galton2) p <- (as.numeric(input$hF) + 1.08*as.numeric(input$hM))/2 c <- predict(model, data.frame(parent = p))
# Chunk of R code for ploting the linear fit to the Galton data (inches): library(ggplot2) limits <- c(min(galton)-1,max(galton)+1) ggplot(data = galton, aes(x=parent,y=child)) + geom_point(color = "red", alpha=0.2, size=3) + geom_smooth(method='lm') + labs(x = "Parent\'s height", y = "Child\'s height", title ="LM prediction using Galton\'s dataset") + coord_cartesian(xlim = limits, ylim = limits) + guides(color = FALSE, fill = FALSE)
Available at: http://vedra.shinyapps.io/PAshiny/
App source code: https://github.com/vedra/ShinyApp
Materials on LMP, Shiny, Slidify etc: www.coursera.com
Image source: www.pixshark.com
Full slidify: https://vedra.github.io/DDPSlidifyFull/index.html