On Github s-kumar-edu / devdataprod-016-slidify
library(shiny) library(randomForest) library(caret)
data(iris) inTrain <- createDataPartition(iris$Species, list = F) train <- iris[inTrain, ] test <- iris[-inTrain, ] fit <- randomForest(Species ~ ., data = iris) print(fit)
## ## Call: ## randomForest(formula = Species ~ ., data = iris) ## Type of random forest: classification ## Number of trees: 500 ## No. of variables tried at each split: 2 ## ## OOB estimate of error rate: 4.67% ## Confusion matrix: ## setosa versicolor virginica class.error ## setosa 50 0 0 0.00 ## versicolor 0 47 3 0.06 ## virginica 0 4 46 0.08
predictions <- predict(fit, test) head(predictions, 10)
## 2 4 5 6 8 14 15 17 19 22 ## setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa ## Levels: setosa versicolor virginica