On Github ntustison / AngerAndTelegrams
results <- read.csv( './Data/labelresultsAnts.csv' ) resultsSubset <- results[which( results$gender == 1 & results$age >= 6 & results$age <= 35 & results$handedness == 'R' ),] drops <- c( "area.5th.ventricle", "area.left.lesion", "area.right.lesion", "area.left.vessel", "area.right.vessel", "area.optic.chiasm", "volume.5th.ventricle", "volume.left.lesion", "volume.right.lesion", "volume.left.vessel", "volume.right.vessel", "volume.optic.chiasm", "jacobian.5th.ventricle", "jacobian.left.lesion", "jacobian.right.lesion", "jacobian.left.vessel", "jacobian.right.vessel", "jacobian.optic.chiasm" ) resultsSubset <- resultsSubset[, !( names( resultsSubset ) %in% drops )] # match the data based on age and fiq library( MatchIt )
## Loading required package: MASS
resultsDf <- data.frame( subject.id = resultsSubset$subject.id, dx.group = resultsSubset$dx.group, age = resultsSubset$age, fiq = resultsSubset$fiq ) resultsDf$dx.group <- as.numeric( resultsDf$dx.group ) - 1 resultsDf <- na.omit( resultsDf ) resultsDf <- match.data( matchit( dx.group ~ age + fiq, data = resultsDf, method = "nearest", discard = "both" ) )
## Warning: Fewer control than treated units and matching without ## replacement. Not all treated units will receive a match. Treated units ## will be matched in the order specified by m.order: largest
resultsMatched <- resultsSubset[which( is.element( resultsSubset$subject.id, resultsDf$subject.id ) ), ] write.csv( resultsMatched, './Data/labelresultsANTsSubset.csv', quote = FALSE, row.names = FALSE )
Total number of studies = 450
males = 450, females = 0
autism = 225, controls = 225
rights = 450, lefts = 0, ambis = 0
CALTECH: n = 11 (males = 11, females = 0) CMU: n = 15 (males = 15, females = 0) KKI: n = 27 (males = 27, females = 0) LEUVEN_1: n = 25 (males = 25, females = 0) MAX_MUN: n = 38 (males = 38, females = 0) OHSU: n = 19 (males = 19, females = 0) OLIN: n = 22 (males = 22, females = 0) PITT: n = 36 (males = 36, females = 0) SDSU: n = 22 (males = 22, females = 0) STANFORD: n = 18 (males = 18, females = 0)
TRINITY: n = 43 (males = 43, females = 0) UCLA_1: n = 53 (males = 53, females = 0) UCLA_2: n = 18 (males = 18, females = 0) UM_1: n = 50 (males = 50, females = 0) UM_2: n = 27 (males = 27, females = 0) YALE: n = 26 (males = 26, females = 0)
# Paper results
library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( total.volume ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 635506407.47 635506407.47 0.04 0.8445 site 15 2744732545213.81 182982169680.92 11.09 0.0000 age 1 454992242535.23 454992242535.23 27.58 0.0000 fiq 1 2332337220.80 2332337220.80 0.14 0.7071 Residuals 431 7111246085396.22 16499410870.99
total.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.18 0.17 0.58 CMU 0.74 0.94 0.85 KKI 0.55 0.13 0.08 LEUVEN_1 0.93 0.26 0.26 MAX_MUN 0.36 0.10 0.79 OHSU 0.59 0.22 0.55 OLIN 0.34 0.01 0.85 PITT 0.46 0.38 0.75total.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.03 0.01 0.97 STANFORD 0.08 0.80 0.57 TRINITY 0.73 0.35 0.25 UCLA_1 0.23 0.18 0.10 UCLA_2 0.51 0.39 0.03 UM_1 0.11 0.00 0.06 UM_2 0.90 0.69 0.98 YALE 0.18 0.00 0.09library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( volume.right.amygdala ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 27789.06 27789.06 2.20 0.1391 site 15 1635102.05 109006.80 8.61 0.0000 age 1 387099.58 387099.58 30.59 0.0000 fiq 1 3068.90 3068.90 0.24 0.6227 Residuals 431 5454667.73 12655.84
volume.right.amygdala ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.56 0.13 0.77 CMU 0.88 0.44 0.37 KKI 0.91 0.05 0.40 LEUVEN_1 0.21 0.21 0.86 MAX_MUN 0.65 0.01 0.96 OHSU 0.85 0.06 0.61 OLIN 0.78 0.04 0.18 PITT 0.51 0.18 0.55volume.right.amygdala ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.77 0.03 0.22 STANFORD 0.66 0.68 0.68 TRINITY 0.40 0.66 0.49 UCLA_1 0.00 0.20 0.03 UCLA_2 0.49 0.03 0.26 UM_1 0.99 0.06 0.54 UM_2 0.59 0.14 0.42 YALE 0.10 0.04 0.39library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( volume.left.amygdala ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 16020.28 16020.28 1.16 0.2814 site 15 1602296.82 106819.79 7.76 0.0000 age 1 307290.75 307290.75 22.31 0.0000 fiq 1 5151.07 5151.07 0.37 0.5412 Residuals 431 5936259.02 13773.22
volume.left.amygdala ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.38 0.21 0.44 CMU 0.52 0.69 0.76 KKI 0.83 0.18 0.49 LEUVEN_1 0.42 0.80 0.95 MAX_MUN 0.36 0.01 0.97 OHSU 0.38 0.30 0.80 OLIN 0.43 0.06 0.33 PITT 0.45 0.32 0.46volume.left.amygdala ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.21 0.09 0.73 STANFORD 0.09 0.08 0.63 TRINITY 0.35 0.26 0.55 UCLA_1 0.45 0.02 0.13 UCLA_2 0.62 0.26 0.27 UM_1 0.80 0.00 0.05 UM_2 0.07 0.38 0.95 YALE 0.24 0.01 0.48library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( csf.volume ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 614627510.94 614627510.94 0.50 0.4808 site 15 174831189871.42 11655412658.09 9.44 0.0000 age 1 85957057583.14 85957057583.14 69.62 0.0000 fiq 1 253881444.90 253881444.90 0.21 0.6504 Residuals 431 532118740766.49 1234614247.72
csf.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.52 0.07 0.66 CMU 0.33 0.40 0.91 KKI 0.78 0.72 0.05 LEUVEN_1 0.75 0.05 0.22 MAX_MUN 0.21 0.00 0.97 OHSU 0.54 0.12 0.54 OLIN 0.11 0.00 0.98 PITT 0.81 0.00 0.80csf.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.02 0.00 0.43 STANFORD 0.15 0.95 0.84 TRINITY 0.34 0.00 0.37 UCLA_1 0.54 0.05 0.10 UCLA_2 0.73 0.33 0.05 UM_1 0.30 0.00 0.01 UM_2 0.86 0.34 0.47 YALE 0.69 0.00 0.93library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( gray.matter.volume ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 50521.73 50521.73 0.00 0.9971 site 15 537930385772.23 35862025718.15 9.13 0.0000 age 1 178841055.47 178841055.47 0.05 0.8311 fiq 1 12633668.06 12633668.06 0.00 0.9548 Residuals 431 1692807038204.71 3927626538.76
gray.matter.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.13 0.63 0.73 CMU 0.98 0.70 0.93 KKI 0.33 0.72 0.32 LEUVEN_1 0.92 1.00 0.23 MAX_MUN 0.66 0.68 0.74 OHSU 0.28 0.43 0.49 OLIN 0.27 0.18 0.98 PITT 0.30 0.21 0.83gray.matter.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.06 0.22 0.68 STANFORD 0.05 0.89 0.60 TRINITY 0.90 0.42 0.35 UCLA_1 0.23 0.41 0.12 UCLA_2 0.51 0.10 0.06 UM_1 0.14 0.02 0.20 UM_2 0.99 0.86 0.63 YALE 0.18 0.07 0.04library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( white.matter.volume ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 30934356.06 30934356.06 0.02 0.9002 site 15 329596906415.16 21973127094.34 11.19 0.0000 age 1 71081230366.45 71081230366.45 36.19 0.0000 fiq 1 455050833.05 455050833.05 0.23 0.6305 Residuals 431 846531930532.55 1964111207.73
white.matter.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.14 0.10 0.45 CMU 0.80 0.64 0.79 KKI 0.58 0.27 0.03 LEUVEN_1 0.74 0.11 0.31 MAX_MUN 0.20 0.01 0.85 OHSU 0.41 0.24 0.58 OLIN 0.82 0.04 0.87 PITT 0.37 0.10 0.66white.matter.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.05 0.01 0.86 STANFORD 0.09 0.25 0.99 TRINITY 0.63 0.24 0.26 UCLA_1 0.25 0.34 0.50 UCLA_2 0.86 0.75 0.07 UM_1 0.12 0.00 0.26 UM_2 0.78 0.75 1.00 YALE 0.20 0.01 0.05library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( deep.gray.matter.volume ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 4239503.15 4239503.15 0.24 0.6277 site 15 603085508.77 40205700.58 2.23 0.0051 age 1 378605809.44 378605809.44 21.04 0.0000 fiq 1 11451993.28 11451993.28 0.64 0.4255 Residuals 431 7757010099.65 17997703.25
deep.gray.matter.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.56 0.03 0.38 CMU 0.98 0.86 0.92 KKI 0.40 0.43 0.30 LEUVEN_1 0.58 0.14 0.90 MAX_MUN 0.47 0.01 0.82 OHSU 0.90 0.71 0.15 OLIN 0.46 0.01 0.76 PITT 0.83 0.93 0.47deep.gray.matter.volume ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.30 0.04 0.83 STANFORD 0.02 0.13 0.06 TRINITY 0.28 0.81 0.05 UCLA_1 0.32 0.73 0.11 UCLA_2 0.99 0.80 0.48 UM_1 0.03 0.00 0.01 UM_2 0.92 0.81 1.00 YALE 0.01 0.32 0.47library( xtable ) results <- read.csv( './Data/labelresultsAntsSubset.csv' ) fit <- aov( total.mean.thickness ~ dx.group + site + age + fiq, data = results ) print( xtable( anova( fit ) ), type = "html" )Df Sum Sq Mean Sq F value Pr(>F) dx.group 1 0.11 0.11 3.20 0.0742 site 15 14.56 0.97 27.69 0.0000 age 1 1.48 1.48 42.29 0.0000 fiq 1 0.01 0.01 0.43 0.5136 Residuals 431 15.10 0.04
total.mean.thickness ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue CALTECH 0.28 0.67 0.44 CMU 0.49 0.24 0.05 KKI 0.73 0.85 0.16 LEUVEN_1 0.17 0.15 0.76 MAX_MUN 0.35 0.00 0.65 OHSU 0.19 0.50 0.67 OLIN 0.50 0.00 0.48 PITT 0.10 0.02 0.81total.mean.thickness ~ dx.group + age + fiq
site dx.Pvalue age.Pvalue fiq.Pvalue SDSU 0.91 0.53 0.42 STANFORD 0.63 0.56 0.33 TRINITY 0.24 0.22 0.98 UCLA_1 0.49 0.58 0.27 UCLA_2 0.35 0.01 0.33 UM_1 0.05 0.03 0.06 UM_2 0.94 0.38 0.47 YALE 0.77 0.16 0.31## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredPr(>|z|) (Intercept) 0.00 siteCMU 0.85 siteKKI 0.35 siteLEUVEN_1 0.70 siteMAX_MUN 0.15 siteOHSU 0.16 siteOLIN 0.33 sitePITT 0.56 siteSDSU 0.28 siteSTANFORD 0.70 siteTRINITY 0.37 siteUCLA_1 0.46 siteUCLA_2 0.30 siteUM_1 0.26 siteUM_2 0.10 siteYALE 0.29 age 0.13 fiq 0.01