Twimoji
A fluffy experiment in analyzing emoji use in tweets
Overview
- May 9 - July 11, 2015
- 28,799 location-enabled tweets
- 7,363 unique users
Tweet Cleaning
emoji.frequency <- matrix(NA, nrow = nrow(ds), ncol = nrow(emoticons))
for(i in 1:nrow(emoticons)){
emoji.frequency[,i] <- regexpr(emoticons$bytes[i],ds$text, useBytes = T )
}
emoji.per.tweet <- rowSums(emoji.frequency > -1)
emoji.indexes <- which( emoji.per.tweet > 0)
emoji.ds <- NULL
for(i in emoji.indexes){
valid.cols <- which(emoji.frequency[i,]>-1)
for(j in valid.cols){
emoji.ds <- rbind(cbind(ds[i,], emoticons[j,]), emoji.ds)
}
}
Emoji
- ~ 25% of tweets contained emoji
- 590 unique emoji
- 7,131 tweets
Top Emoji
Count
Img
Unicode
Desc
1085
U+1F602
face with tears of joy
519
U+1F629
weary face
430
U+1F62D
loudly crying face
402
U+1F60D
smiling face with heart-shaped eyes
Caveats
- Estimated only 1% of tweets have location
- Emoji meaning vs. use
- Inconsistent rendering across platforms
Twimoji
A fluffy experiment in analyzing emoji use in tweets
Lauren Ancona @laurenancona
Christopher Tufts @devlintufts