On Github katyhuff / 2015-10-15-ncsu
Severe accident neutronics and thermal hydraulics can be simulated beautifully for simple geometries and well studied materials. (below, INL BISON work.)
\[\sigma(E,\vec{r},\hat{\Omega},T,x,i)\]
\[k=1\]
\[\beta_i, \lambda_{d,i}\]
# External Reactivity from reactivity_insertion import RampReactivityInsertion rho_ext = RampReactivityInsertion(timer=ti, t_start=t_feedback + 10.0*units.seconds, t_end=t_feedback + 20.0*units.seconds, rho_init=0.0*units.delta_k, rho_rise=600.0*units.pcm, rho_final=600.0*units.pcm)
fuel = th.THComponent(name="fuel", mat=TRISO(), vol=vol_fuel, T0=t_fuel, alpha_temp=alpha_fuel, timer=ti, heatgen=True, power_tot=power_tot/n_pebbles, sph=True, ri=r_mod, ro=r_fuel ) mod = th.THComponent(name="mod", mat=Graphite(), vol=vol_mod, T0=t_mod, alpha_temp=alpha_mod, timer=ti, sph=True, ri=0.0, ro=r_mod) cool = th.THComponent(name="cool", mat=Flibe(), vol=vol_cool, T0=t_cool, alpha_temp=alpha_cool, timer=ti) shell = th.THComponent(name="shell", mat=Graphite(), vol=vol_shell, T0=t_shell, alpha_temp=alpha_shell, timer=ti, sph=True, ri=r_fuel, ro=r_shell)
# The coolant convects to the pebbles cool.add_convection('pebble', h=h_cool, area=a_pb) cool.add_advection('cool', m_flow/n_pebbles, t_inlet, cp=cool.cp)
Average fuel pebble peak temperature \[<1100^\circ C\]
Hundreds of discrete facilities mine, mill, convert, fabricate, transmute, recycle, and store nuclear material.
An agent-based simulation is made up of actors and communications between those actors.
A facility might create material.
It might request material.
It might do both.
Even simple fuel cycles have many independent agents.
If a decision problem is in NP-C, then the corresponding optimization problem is NP-hard.
<fuel> <incommodity>mox</incommodity> - <outcommodity>waste</outcommodity> + <outcommodity>spent_fuel</outcommodity> <inrecipe>mox_fresh_fuel</inrecipe> <outrecipe>mox_spent_fuel</outrecipe> </fuel>
Power generated by reactor type.
Capacity deployed each year, by reactor type.