On Github cboettig / globalchange
Overpeck+ (2011) doi:10.1126/science.1197869
Worm+ (2006) doi:10.1126/science.1132294
Barnoksy+ (2012) doi:10.1038/nature11018
credit: NOAA
credit: NASA
credit: NSF
credit: Hopkin (2006) doi:10.1038/444420a
credit: Witze (2013) doi:10.1038/501480a
credit: NERSC
credit: Scambos & Bauer, NSIDC
Overpeck+ (2011) doi:10.1126/science.1197869
Baraniuk (2011) doi:10.1126/science.1197448
adapted from Reichman+ (2011) doi:10.1126/science.1197962
today the visualization and analysis component has become a bottleneck
Fox & Hendler (2011) doi:10.1126/science.1197654
Fox & Hendler (2011) doi:10.1126/science.1197654
Most scientific data is created in a form that facilitates its generation rather than focusing on its eventual use.
Fox & Hendler (2011) doi:10.1126/science.1197654
credit: Arthus-Bertrand
credit: Arthus-Bertrand
building tools, building community
IPCC records and model projections at your fingertips
library("rWBclimate") country.list <- c("USA", "CAN") country.dat <- get_historical_temp(country.list, "year") ggplot(country.dat, aes(x = year, y = data, group = locator)) + geom_point() + geom_path() + xlab("Year") + ylab("Average annual temperature") + stat_smooth(se = F, colour = "black") + facet_wrap(~locator, scale = "free") + theme_bw()
IPCC records and model projections at your fingertips
library("rfisheries") species <- of_species_codes() who <- c("TUX", "COD", "VET", "NPA") by_species <- lapply(who, function(x) of_landings(species = x)) names(by_species) <- who dat <- melt(by_species, id = c("catch", "year"))[, -5] names(dat) <- c("catch", "year", "species", "a3_code") ggplot(dat, aes(year, catch)) + geom_line() + facet_wrap(~a3_code, scales = "free_y") + theme_bw()
Jones+ (2006) doi:10.1146/annurev.ecolsys.37.091305.110031
effective interdisciplinary communication of data limitations with regard to, for example,
Overpeck+ (2011) doi:10.1126/science.1197869
Evans+ doi:10.1126/science.1201765
Mitchner (2012) doi:10.1016/j.tree.2011.11.016
Although research scientists have been the main users of these data, an increasing number of resource managers (working in fields such as water, public lands, health, and marine resources) need and are seeking access to climate data to inform their decisions, just as a growing range of policy-makers rely on climate data to develop climate change strategies
- Overpeck+ (2011) doi:10.1126/science.1197869
credit: The Economist
Synthesizes over 140 data sets.
How easy would it be to update this to reflect new data?
adapted from Reichman+ (2011) doi:10.1126/science.1197962
Reichman+ (2011) doi:10.1126/science.1197962
Peng (2011) doi:10.1126/science.1213847
Mascarelli (2014) doi:10.1038/nj7493-523a
credit: The Economist
credit: The Economist
credit: Wikipedia
Global change problems are increasingly data driven, bringing new challenges and opportunities: