On Github Xparx / Inferring-MYC-GRN-presentation
Specific
General
Least squares
\[ \begin{array} \boldsymbol{A_{ls}} = \arg\min_{\boldsymbol{A}} || \boldsymbol{A}\boldsymbol{\hat{Y}} + \boldsymbol{P}||_{\ell_2}\\ \text{subject to:}~~ \boldsymbol{A}\boldsymbol{\hat{Y}} = -\boldsymbol{P}\\ \end{array} \]LASSO
\[ \boldsymbol{A_{\zeta}} = \arg\min_{\boldsymbol{A}} || \boldsymbol{A}\boldsymbol{\hat{Y}} + \boldsymbol{P}||_{\ell_2} + \zeta||\boldsymbol{A}||_{\ell_1} \]Procedure
Sample uniformly from data \([\boldsymbol{\hat{Y}}, \boldsymbol{P}]\) a new data set \([\boldsymbol{\hat{Y}_{bs}}, \boldsymbol{P_{bs}}]\) Apply LASSO on the new data set so that \[ \boldsymbol{A_{reg}}(\zeta) = \arg\min_{\boldsymbol{A}} || \boldsymbol{A}\boldsymbol{\hat{Y}_{bs}} + \boldsymbol{P_{bs}}||_{\ell_2} + \zeta||\boldsymbol{A}||_{\ell_1} \] Repeat for \(n\) number of bootstraps. A link \(s_{ij} \in \boldsymbol{A_{bs}}\) has bootstrap support \(s_{ij} = \frac{e_{ij}}{n}\cdot 100\%\) where \(e_{ij}\) is the times we have seen \(a_{ij}\) in \(\boldsymbol{A_{reg}}(\zeta)\)Total Least Squares (TLS)
Remember:
Error: Embedded data could not be displayed.Total Least Squares (TLS)
Remember:
Error: Embedded data could not be displayed.Total Least Squares (TLS)
\[ \boldsymbol{A}(\boldsymbol{Y} - \boldsymbol{E}) = -(\boldsymbol{P} - \boldsymbol{F}) \]Total Least Squares (TLS)
\[ \boldsymbol{A}(\boldsymbol{Y} - \boldsymbol{E}) = -(\boldsymbol{P} - \boldsymbol{F}) \]Total Least Squares (TLS)
\[ \begin{array} \boldsymbol{A_{tls}} = \arg\min_{\boldsymbol{A}} || [(\boldsymbol{A}\boldsymbol{\hat{Y}} + \boldsymbol{\hat{P}})~ (\boldsymbol{\hat{Y}} + \boldsymbol{A}^{-1}\boldsymbol{\hat{P}})]||_{\ell_2}\\ \text{subject to:}~~ \boldsymbol{A}\boldsymbol{\hat{Y}} = -\boldsymbol{\hat{P}}\\ \end{array} \]Markovsky and Van Huffel 2007
Total Least Squares (TLS)
\[ \begin{array} \boldsymbol{A_{tls}} = \arg\min_{\boldsymbol{A}} || [(\boldsymbol{A}\boldsymbol{\hat{Y}} + \boldsymbol{\hat{P}})~ (\boldsymbol{\hat{Y}} + \boldsymbol{A}^{-1}\boldsymbol{\hat{P}})]||_{\ell_2}\\ \text{subject to:}~~ \boldsymbol{A}\boldsymbol{\hat{Y}} = -\boldsymbol{\hat{P}}\\ \end{array} \]Markovsky and Van Huffel 2007
Not implemented yet!
Thanks