Building generic data queries – using Python AST



Building generic data queries – using Python AST

0 1


Prez-Python-AST

Building generic data queries using Python AST

On Github Serenytics / Prez-Python-AST

Building generic data queries

using Python AST

Paris.py meetup #7 - Paris 2015-09-16

Adrien Chauve @adrienchauve

  • Serenytics is an early stage startup that buils a SASS platform to Analyze, Visualize and Share your Data; go to https://www.serenytics.com for more.
  • We use python with numpy, pandas, sqlalchemy, mrq for our backend.
  • This talk is about how we use python AST to build generic data queries.

Contents

Building generic data queries: why? Python AST to the rescue Walking the AST to build data queries

1. Building generic data queries: Why?

1. Building generic data queries: Why?

Context:

  • You love data
  • You want to watch a movie
  • You know the MovieLens database (20M ratings on 27k movies by 138k users)

Disclaimer:

  • could also be bigger data (sales) but less sexy!
  • data could be stored on a SQL server instead of a CSV file

1. Context: Select the best movie (1/3)

Naïve sort: by Average Rating then by NbRatings

Title Average Rating NbRatings Consuming Kids: The Commercialization of Childhood (2008) 5 2 Catastroika (2012) 5 2 Life On A String (Bian chang Bian Zou) (1991) 5 1 Hijacking Catastrophe: 9/11, Fear & the Selling of American Empire (2004) 5 1 Snow Queen, The (Lumikuningatar) (1986) 5 1 Al otro lado (2004) 5 1 Sierra, La (2005) 5 1 Between the Devil and the Deep Blue Sea (1995) 5 1 Schmatta: Rags to Riches to Rags (2009) 5 1 Moth, The (Cma) (1980) 5 1

1. Context: Select the best movie (2/3)

Naïve sort: by NbRatings

Title Average Rating NbRatings Pulp Fiction (1994) 4.17 67310 Forrest Gump (1994) 4.03 66172 Shawshank Redemption, The (1994) 4.45 63366 Silence of the Lambs, The (1991) 4.18 63299 Jurassic Park (1993) 3.66 59715 Star Wars: Episode IV - A New Hope (1977) 4.19 54502 Braveheart (1995) 4.04 53769 Terminator 2: Judgment Day (1991) 3.93 52244 Matrix, The (1999) 4.19 51334 Schindler's List (1993) 4.31 50054

1. Context: Select the best movie (3/3)

Better sort: by custom rating (k=1000)

$$CustomRating_k = AverageRating * {NbRatings \over NbRatings + k}$$ Title Custom Rating k=1000 Average Rating NbRatings Shawshank Redemption, The (1994) 4.378 4.45 63366 Godfather, The (1972) 4.262 4.36 41355 Usual Suspects, The (1995) 4.244 4.33 47006 Schindler's List (1993) 4.226 4.31 50054 Godfather: Part II, The (1974) 4.125 4.28 27398 Fight Club (1999) 4.124 4.23 40106 Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981) 4.124 4.22 43295 Star Wars: Episode IV - A New Hope (1977) 4.115 4.19 54502 Pulp Fiction (1994) 4.113 4.17 67310 Silence of the Lambs, The (1991) 4.112 4.18 63299

1. Need computed columns to best analyze your data

New computed column: $$CustomRating = AverageRating * {NbRatings \over NbRatings + 1000}$$

Using pandas (python):

# df is a pandas.DataFrame instance
df['CustomRating'] = df['AverageRating'] * df['NbRatings'] / (df['NbRatings'] + 1000)

In SQL:

SELECT AverageRating * NbRatings / (NbRatings + 1000) AS CustomRating FROM ...;

How to generate both pandas and SQL from a single string?

2. Python AST to the rescue

2. AST: What is it?

  • Abstract Syntax Tree
  • represents your code as a tree object
x + 42

2. AST: What is it?

  • represents your code as a tree object
>>> import ast
>>> ast.dump(ast.parse("x + 42", mode="eval")

Expression(body=BinOp(left=Name(id='x', ctx=Load()),
                      op=Add(),
                      right=Num(n=42))))
  • ast.parse takes a string and returns a python object, instance of class Expression
  • 'mode="eval"' restricts to parsing to python expressions (same as in lambdas, no statement like if/for/def/return/import etc... authorized)
  • using ast.dump enables to serialize this Expression object for humans

2. AST: What is it?

$$CustomRating = AverageRating * NbRatings / (NbRatings + 1000)$$

>>> ast.dump(ast.parse("AverageRating * NbRatings / (NbRatings + 1000)",
                       mode="eval"))


Expression(body=BinOp(left=BinOp(left=Name(id='AverageRating', ctx=Load()),
                                 op=Mult(),
                                 right=Name(id='NbRatings', ctx=Load())),
                      op=Div(),
                      right=BinOp(left=Name(id='NbRatings', ctx=Load()),
                                  op=Add(),
                                  right=Num(n=1000))))
  • using python ast.parse begins to be really cool: we get more complex expressions including '()' parsed for free

3. Walking the AST to build data queries

3. AST: Great, but what can we do with it?

Expression(body=BinOp(left=Name(id='x', ctx=Load()),
                      op=Add(),
                      right=Num(n=42)))
OPERATORS = {
    ast.Add: operator.add,
    ast.Mult: operator.mul,
    ast.Div: operator.truediv,
}

def eval_expr(expr):
    return _eval(ast.parse(expr, mode='eval').body)

def _eval(node):  # recursively evaluate tree nodes
    if isinstance(node, ast.Num):
        return node.n
    elif isinstance(node, ast.BinOp):
        return OPERATORS[type(node.op)](_eval(node.left), _eval(node.right))
    elif isinstance(node, ast.UnaryOp):
        return OPERATORS[type(node.op)](_eval(node.operand))
    elif isinstance(node, ast.Name):
        return ???
    raise TypeError(node)

3. AST: Building a pandas query

class PandasEvaluator(object):
    def __init__(self, dataframe):
        self._dataframe = dataframe

    def eval_expr(self, expr):
        return self._eval(ast.parse(expr, mode='eval').body)

    def _eval(self, node):  # recursively evaluate tree nodes
        if isinstance(node, ast.Num):
            return node.n
        elif isinstance(node, ast.BinOp):
            return OPERATORS[type(node.op)](self._eval(node.left),
                                            self._eval(node.right))
        elif isinstance(node, ast.UnaryOp):
            return OPERATORS[type(node.op)](self._eval(node.operand))
        elif isinstance(node, ast.Name):
            return self.dataframe[node.id]
        raise TypeError(node)

df = pandas.read_csv('ratings.csv')
formula = "AverageRating * NbRatings / (NbRatings + 1000)"
df['CustomRating'] = PandasEvaluator(df).eval_expr(formula)

3. AST: Building a SQL query using SQLAlchemy

class SQLEvaluator(object):
    def __init__(self, sql_table):
        self._sql_table = sql_table  # instance of SQLAlchemy Table class

    def eval_expr(self, expr):
        return self._eval(ast.parse(expr, mode='eval').body)

    def _eval(self, node):  # recursively evaluate tree nodes
        if isinstance(node, ast.Num):
            return node.n
        elif isinstance(node, ast.BinOp):
            return OPERATORS[type(node.op)](self._eval(node.left),
                                            self._eval(node.right))
        elif isinstance(node, ast.UnaryOp):
            return OPERATORS[type(node.op)](self._eval(node.operand))
        elif isinstance(node, ast.Name):
            return self._sql_table[node.id]
        raise TypeError(node)

session = sessionmaker(...)
sql_table = Table(...)
formula = "AverageRating * NbRatings / (NbRatings + 1000)"
custom_ratings_column = SQLEvaluator(sql_table).eval_expr(formula)
data = [row for row in session.query(custom_ratings_column)]

Building generic data queries using Python AST

What we did so far:

  • Enter a formula as a string
  • Parse it and generate the AST using python ast.parse
  • Use AST evaluators to build pandas and SQL new columns
  • In just ~20 lines of code!

Wait... there is more!

  • Add support for python "> < = and or not" operators
  • Use SqlAlchemy DSL to generate conditional queries:
    SELECT... CASE WHEN... ELSE ... END ... ;
  • Use numpy masks to do the same with pandas dataframe

Great links

Module(body=[
    Print(dest=None,
          values=[Str(s='Thank you! Questions?')],
          nl=True)
])
@adrienchauve adrien.chauve@serenytics.com
  • The HTML code of this slide is so ugly, but who cares?
1
Building generic data queries using Python AST Paris.py meetup #7 - Paris 2015-09-16 Adrien Chauve @adrienchauve @Serenytics Serenytics is an early stage startup that buils a SASS platform to Analyze, Visualize and Share your Data; go to https://www.serenytics.com for more. We use python with numpy, pandas, sqlalchemy, mrq for our backend. This talk is about how we use python AST to build generic data queries.