statbytes-js



statbytes-js

0 3


statbytes-js

StatBytes presentation on JavaScript

On Github Planeshifter / statbytes-js

Statistics in JavaScript

StatBytes Seminar Presentation Philipp Burckhardt 11/05/2015

Why JavaScript?

Flexible, functional, web-based It's faster than Python and R Rich ecosystem Graphics support

Node.js and NPM

Data Analysis with JavaScript

Compute

  • Project started by Athan Reines, data scientist at Verbify Inc.
  • Goal: Open-Source numerical computing library comparable to Matlab, R and Python
  • We have written over >300 modules and counting

Compute Overview

  • Scope: Utility functions, mathematics, statistics.
  • Polymorphic interfaces
  • Matrix data type
  • Fully documented + tested, see for example sqrt and mean

Data Visualization

JavaScript library by Mike Bostock to visualize data with HTML, SVG, and CSS.

Some Example Visualizations

Goal: Create a histogram with d3 for Edgar Anderson's famous Iris data set.

package.json file

{
  "name": "sandbox",
  "version": "0.0.0",
  "scripts": {
    "browserify": "node_modules/.bin/browserify script.js > bundle.js",
    "start": "node_modules/.bin/beefy script.js:bundle.js 8000 --live"
  },
  "devDependencies": {
    "beefy": "^2.1.5",
    "browserify": "^12.0.1"
  },
  "dependencies": {
    "compute.io": "^0.106.0",
    "d3": "^3.5.6",
    "datasets-iris-setosa-sepal": "^1.0.0"
  }
}
					

We load node modules in browser-side code.

var compute = require( 'compute.io' );
var sepal = require( 'datasets-iris-setosa-sepal' );
var d3 = require( 'd3' );

We create a SVG object:




var svg = d3.select( '#histogram' ).append( 'svg' )


We create a SVG object:

var margin = {top: 10, right: 30, bottom: 30, left: 30},
  width = 960 - margin.left - margin.right,
  height = 500 - margin.top - margin.bottom;

var svg = d3.select( '#histogram' ).append( 'svg' )
  .attr( 'width', width + margin.left + margin.right )
  .attr( 'height', height + margin.top + margin.bottom );

We use scales to map from input domain to output range.

var x = d3.scale.linear()
  .domain([0,5.6])
  .range([0,width]);

var y = d3.scale.linear()
  .domain([0,1])
  .range([height, 0]);

General update pattern

var bars = svg.selectAll( 'rect' )
    .data( data );
  // Enter Selection
  bars.enter()
    .append( 'rect' )
  // Update Selection
    // set attributes of bars...

  // Exit Selection
  bars.exit().remove();

General update pattern

function draw( dat ) {
  var data = d3.layout.histogram()
    .bins(x.ticks(20))
    .frequency( false )( dat );
  var bars = svg.selectAll( 'rect' )
    .data( data );
  // Enter Selection
  bars.enter()
    .append( "rect" )
  // Update Selection
  bars.attr( "width", x(data[0].dx) - 1)
    .attr( "height", function(d) {
      return height - y(d.y);
    })
    .attr( "transform", function(d) {
      return "translate(" +
      x(d.x) + "," + y(d.y) + ")";
    });
  // Exit Selection
  bars.exit().remove();
}

We might want to add an x-axis.

var xAxis = d3.svg.axis()
  .scale( x )
  .orient( 'bottom' );

svg.append( 'g' )
  .attr( 'class', 'x axis' )
  .attr( 'transform', 'translate(0,' + height + ')' )
  .call(xAxis);

We let the user select which data to display.

function updateData() {
  var option = d3.select( '#dataSelect' ).property( 'value' );
  switch ( option ) {
    case 'sepalWidth':
      draw( sepal.width );
    break;
    case 'sepalLength':
      draw( sepal.len )
    break;
  }
}
d3.select( '#dataSelect' ).on( 'change', updateData );

Distributions

  • Comprehensive package for working with statistical distributions
  • Facilities to evaluate CDFs, PDFs & quantile functions
  • Distribution properties
  • Random number generators

PDFs, CDFs & quantile functions

Sampling from a Distribution

  • Generators for all common distributions.
  • Seedable
  • Performant algorithms: E.g. Ziggurat instead of Box-Mueller transform for Gaussian

Thank you!

Statistics in JavaScript StatBytes Seminar Presentation Philipp Burckhardt 11/05/2015